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Shear flow instability in a conducting viscous fluid 
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The effect of a parallel magnetic field upon the stability of the plane interface 
between two conducting viscous fluids in uniform relative motion is considered. 
A parameter reduction, which has not previously been noted, is employed to 
facilitate the solution of the problem. Neutral stability curves for unrestricted 
ranges of the governing parameters are found, and the approximate solutions of 
other authors are examined in this light. 

1. Introduction 
The problem of the stability of the plane interface between two fluids in relative 

motion has received considerable attention. Of recent interest is the question of 
the effect of a magnetic field upon the stability of such flows. I n  an attempt to 
furnish an answer to this question, Gotoh (1961,1971) and Abas (1969) considered 
the effect of a parallel magnetic field on the stability of flows of the free boundary- 
layer type. However, both these authors made certain simplifying assumptions 
in their treatments, and therefore provide only incomplete solutions. 

In  this paper we shall consider the stability of a shear layer in the presence of 
a magnetic field (parallel to the basic flow), but without recourse to the approxi- 
mations employed by other authors. Essentially the problem is a three-para- 
meter one involving the Reynolds number R, the magnetic Reynolds R, and the 
Alfv6n number A .  Both Abas and Gotoh used the ‘small R,’ approximation con- 
sidered by Stuart (1954), which leads to a reduction in the number of parameters: 
R, and A2 combine to give the single magnetic interaction number A2R,. How- 
ever, we shall show that a simple transformation, valid for the Helmholtz profile, 
leads to a reduction in the number of parameters, without any approximation 
being necessary. 

2. The fluid equations 
We consider ail incompressible fluid of uniform conductivity CT, magnetic 

permeability p ,  density p and kinematic viscosity u. In  a Cartesian co-ordinate 
system (xl, x2,  x3) the steady state we wish to consider is 

(2.1) I v = v, = (v,,, O , O ) ,  where vo = w0(x2), 

B = B, = (B,, 0, 0 ) ,  B, = constant, 

where v denotes the fluid velocity and B the magnetic induction field. For the 
basic state to satisfy the equations of motion it is necessary that the velocity 
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distribution be parabolic. However, it will be assumed that a wider class of 
flows (e.g. the free boundary layer between parallel streams) may be included in 
our discussion. This matter is discussed in further detail in Lin (1955 pp. 52,115). 

To describe perturbations of this basic state we put 

v1 = (v1(x2), v2(x2)9 ‘ 3 ( x 2 ) )  exp ( - ialwt + ialxl+ ia3x3) ,  

b, = (b,(x,),b,(x,),b3(x,))exp (-ia,wt+ia,x,+ia,x,), 

where v, denotes the perturbation velocity and b, the perturbation magnetic 
induction field. Here a, and a3 are positive constants, and w is complex. Then it can 
be shown (Stuart 1954) that v and 9 satisfy the (dimensionless) equations 

(7J -c )g -v  = (iaRm)-1($”-A2$), (2.2) 

(u-c) ( V ” - ~ 2 +  u ~ ~ ~ - A ~ ( + A ~ $ )  = ( i a ~ ) - l ( v i ~ - 2 h 2 v ’ r + ~ 4 v ) ,  (2.3) 

where v 2  = VV, V~ = V U ( y ) ,  b2 = Bo$, x2  = Ly, cx = La,, 

h = L ( u ~ , + u ! ) ~ ,  R = LV/V,  R, = ~?T,UVLV, A2 = B ~ / ~ ? T , u ~ V ~ .  

Here L and V are characteristic length and velocity scales (respectively), and a 
prime denotes differentiation with respect to y. 

We consider in detail the case of a steady-state velocity profile 

The use of such a discontinuous profile may be justified in the case of a long wave 
(i.e. small wavenumber); our results are only physically realistic for long waves. 
A discussion of the use of discontinuous profiles in relation to the On-Sommerfeld 
equation has been given by Drazin (1961). 

Following Drazin we derive the boundary conditions that pertain at the plane 
y == 0 by examining certain integrals of equations (2.2) and (2.3). Such a process 
leads to the conditions (for the profile (2.4)) 

[+I = [$’I = 0, [v] = [v‘] = [v” + ~ G L R  ( U  - C )  V ]  = [v”’ - iaR( U - C )  v r ]  = 0, (2.5) 

where the notation [9] = $ ( O + )  - @(OJ has been used. Finally, conditions (2.5) 
must be supplemented by the requirement that t,he disturbance vanishes at  
infinity: 

v,@-+O as IyI -+a. (2.6) 

3. The transformation 
To determine the stability nature of the state (2.1) we solve (2.2) and (2.3) 

subject to suitable boundary conditions. This procedure leads to a dispersion 
relationship of the form 

which determines c in terms of the four parameters A, aR, aR, and A2. The large 
number of free parameters in this relationship has led a number of authors t o  
make certain simplifying assumptions. For example, Gotoh (1961) restricted his 

P(c ,  A, aR, %Rm, A2)  = 0, (3.1) 
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analysis to the case where R and R, are either both large or both small, and both 
Abas (1969) and Gotoh (1971) treated the case for which Rm < 1 (see also Stuart 
1954). When R, < 1 ,  c is determined by the parameters A, aR and aA2R,. 

However, for the proflle (2 .4 )  a parameter reduction in (3 .1 )  is possible without 
such assumptions being made. We consider equations (2 .2 )  and (2 .3 )  and put 

P = A / R ,  g a y  (0 < R < m ) ,  (3 .2 )  

where R is defined by the Squire transformation (Squire 1933) 

R = ERfh. 

Then, under the transformation (3 .2 ) ,  equations (2 .2 )  and (2 .3)  become 

( U  - c) 9 - 21 = (i/9Pm)-1 ( 0 2  - p) 9, (3 .3 )  

( U - C )  (D2 - P2) 21 - (D2 U )  v - A2(D2 - P2) @ = (ip)-l (D4 - 2P2D2 + 84) W, (3.4) 

where D = d/dg, and P, = R,IR is the magnetic Prandtl number. Also, under 
the transformation, ( 3 .  I) becomes 

G(c, /3, P,, A2)  = 0. 

Clearly, c is now determined by only three parameters, namely P, P, and A2. 

because then the boundary conditions are functions of R. 
Finally, we note that the transformation (3 .2 )  is not useful in bounded flows 

4. The shear flow 
Our problem is to solve (3 .3 )  and (3 .4)  subject to conditions (2 .5 )  and (2 .6 ) .  

For the profile (2 .4 ) ,  equations (3 .3 )  and (3 .4 )  are simply ordinary differential 
equations with constant coefficients, and as such possess exponential-type 
solutions. If we eliminate 21 between (3 .3 )  and (3 .4)  then the resulting equation 
demands that $ be of the form 

where 

Here condition (2 .6)  has been applied, SO in taking square roots the convention 
of selecting the root with positive real part is used. The constants A,, . . . , B, are 
determined by the remaining boundary conditions. 

Application of the conditions (2.5), rewritten purely in terms of k, leads to a 
system of six algebraic equations which may be conveniently written in the form 

AX = 0, (4.2) 
31-2 
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where Xis a 6 x 1 column vector consisting of the elements A,, . . ., B3. The matrix 
A is given by 

1 1 I - 1  

P m2 m3 P 
p2 - zipp, m; - zipp, mf - ZiPP, - P2 

p 3  - zipp, mi - 2im2PP,, mi - Zim, /?P, P3 A =  ( 
P 4  - rl - P2s1 mi - r, - mis, m$-rl-m~s, - P 4  

P(P4 - r2 -P2a2) m2(mi - r2 - m;s2) m3(m! - r2 - mis2) /?s 

r2 = 2ip~(Pm-1)(p-iPmc)+2~2Pm(Pm+1), s2 = ZiP(P,+l). 

The condition for a non-trivial solution of (4.3) yields the dispersion equation 

det (A) = 0, (4.4) 

which determines the complex wave speed c in terms of /?, P, and A2. Equation 
(4.4) may be written in the form 

I ( % - P )  (m3-P)(%-P)(n3-P) (m3-mz) (ns-n,)det(C) = 0, 

where C is a 4 x 4 matrix, the elements of which will not be given. Discarding 
the solutions arising from the (above) product of factors,-f we consider the roots 
arising from the equation 

det (C) = 0. (4-5) 

5. Neutral stability: results and discussion 
Neutral disturbances are characterized by the condition ci = 0 (c  = cr+ic i ) .  

However, Tatsumi & Gotoh (1960) have shown that for profiles of the type (2.4) 
c, f 0 (provided that (3.3) and (3.4) possess a unique solution). I n  the absence 
of a magnetic field, this has been demonstrated explicitly (Drazin 1961). There- 
fore, to investigate the neutral solutions of (4.5) we shall take c to be zero. 

An iterative method based upon the Newton-Raphson procedure was used to 
find the roots (i.e. the values of p for fixed P, and A2)  of (4.5). The results of this 
computation are shown in figures 1-5. 

For convenience we have presented our results for the case of a two-dimen- 
sional (i.e. h = a) disturbance. I n  the absence of a magnetic field the growth rate 
of a three-dimensional wave is the same as that of a two-dimensional wave a t  a 
lower Reynolds number (see Squire 1933). However, when a field is introduced 
this is not necessarily the case (Hunt 1966), and so some comment on three- 
dimensional disturbances is necessary. I n  fact, it is clear from the analysis of the 

t These solutions correspond to the occiirrence of terms like jj exp (Pg) in (4.4) and there- 
fore warrant a separate treatment. In the absence of a magnetic field such roots lead to 
null eigenvect om. 
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FIGURE 1. Neutral stability curves for various P,. Instability is the region 
between the curve and the ordinate Rla. 

previous sections that figures 1-5 apply to three-dimensional disturbances pro- 
vided that R/cx is replaced by aR/ha = (Ria) cos2 8, 0 < 8 < @) where 8 is the 
angle the direction of propagation of the disturbance makes with the basic flow. 

Figures 1-3 show neutral stability curves for various values of the magnetic 
Prandtl number P,. The cases Pmz 1 exhibit quite different features and have 
therefore been presented separately (figures 1 and 2); for comparison the case 
P,, = 0-1 is given in all three figures. 

It is clear from figure 1 that for large P,, say P, > 10) the neutral curves appear 
to tend asymptotically to the line A = 1. Thus, for a fixed P, b 1 the instability 
is completely suppressed for A > 1. For A < 1 the instability is always present 
for some value of Rla. Some caution must be used in interpreting figure 1. It 
does not imply that for a given A > 1 and given R, the disturbance is stable, but 
rather than for a given A > 1 and a given R, the disturbance is stable provided 
that R is sufficiently small so that P, > P,,, for some P,,. The critical value P,, 
has not been determined precisely, though from figures I and 2 it is clear that 

For an ideally conducting viscous fluid (P, -+ m) it follows from figure I that 
the critical value of the Alfvdn number is unity. This is in agreement with the 

0.02 < Pnz, < 0.1. 
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FIGURE 2. Neutral stability curves for various P, (P,  < 1). Instability is the 
region between the curve a,nd the ordinate Rlu. 

sufficiency condition for stability (of the flow of an ideally conducting fluid) 
given by Velikhov (1 959). 

Figure 2 shows how events develop for values of P, less than 1.  For P, < Pm0, 
decreasing P, increases the region of instability: the smaller the value of P,, 
the larger A must be to suppress the instability. 

I n  contrast to figure 1 the line A = 1 plays no significant role in figure 2 .  Also 
in contrast to figure 1 is the ‘two-root feature’ that was commented upon by 
Abas (1969) and overlooked by Gotoh (1961). This feature is evident in figure 2 
for the cases P, = 0.01 and P, = 0.02, though it is absent at P, = 0.1. Abas’s 
results are for the case when P, < 1, whereas our results hold more generally, 
having been derived without the use of this approximation. 

For small P, (say P, < 0.01) good agreement exists between Abas’s approxi- 
mate analysis and our treatment. On this basis, therefore, we may conclude that 
for crL 6 0.01 the magnetic field suppresses the instability if A > Acrlt, where 
ACrit + (0*0233)/P,. The approximate value 0.0233 is the critical value? of 
A2R,/R found by Abas. 

t Gotoh (1971) suggests that this critical value is in fact higher, and gives the value 
0.0295. 
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FIGURE 3. Neutral stability curves for P,,, = 0.1. (a )  General P, results. 
( b )  Calculations by Abas. 

Though for P,, < 0.01 good agreement exists between Abas’s results and ours, 
this is not, of course, the case for larger values of P,. To trace the growth of this 
disparity we have plotted in figure 3 our neutral stability curve, marked ( a ) ,  for 
the case P, = 0.1. For comparison with curve (a) we have replotted the results 
of Abas (marked as curve (b) ) .  

For values of A2 less than about 0.2 and values of‘R/a about 10 good agreement 
exists between curves (a)  and (b) ,  and also with the approximate formula (Gotoh 

R/a = 4 x 34 ( 1  + 13AzRm/R), 
1961) 

valid for R, < R, A2R, < R. At about A2 = 0.22 the curves (u) and (b )  diverge. 
We may conclude from this (and figures 1 and 2 )  that the ‘two-root feature ’ is 
characteristic of our results for small P,, and not a product of the ‘small R,’ 
approximation. 

The intermediate range of magnetic Prandtl number 0.1 < P, < 1 is not direct- 
ly covered by figures I and 2. In this region the change-over from the behaviour 
of the curves for P, 2 1 to  the quite different behaviour illustrated in figure 2 
occurs. There is no sharp division: the ‘ two-root feature ’ develops gradually 
and without discontinuity. 
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FIGURE 4. Neutral stability curves in the range 0.1 < P, < 1. -, neutral curves; 
_ _ _ -  , conjectured bound on the neutral curves. 

The shift of the neutral curves towards the line A = 0 (as indicated in figure 1 
for P, decreasing and in figure 2 for P, increasing) appears to stop at  P, + 0.125, 
this value being computed from the behaviour of the neutral curves for large 
Rla. Thus the curve P, = 0.125 provides an approximate lower bound on the 
family of neutral curves as R/a + 00, the bound being based on the A2 axis. This 
behaviour is illustrated in figure 4 for two values of P,, one larger and one smaller 
than the ‘critical’ value P, = 0.125. For values of P, closer to 1.0, such as 
P, = 0.75 and P, = 0.5, the trend indicated in figure 1 by the curves for P, 2 1.0 
is maintained. Note from figure 4 that the ‘critical curve) does not provide a 
complete bound upon the neutral curves, and in fact no neutral curve is such a 
bound. Of course, given a fixed value of A the bounding curve (at that value) may 
be readily found. For example, with the values A2 = 0.1, 0.2 and 0.3 the 
bounding neutral curves are P, = 0.34, 0.29 and 0.23 (respectively). With these 
results we have constructed the conjectured envelope of all bounding neutral 
curves, and this is shown as a dotted line in figure 4. (This curve and the neutral 
curve for P, = 0.2 are indistinguishable, on the scale of figure 4, for the region 

Whilst figures 1 and 2 essentially define the stability regions of our problem, it 
A2 < 0.28.) 
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FIGURE 5. Neutral stability curves for various P,. Stability is the region between 
the ordinate (a/AR) and the curve (for each case). 

is of interest to consider one other diagram. In figure 5 we have plotted (a/R) A-l 
against A-1 for various values of the magnetic Prandtl number. For fixed con- 
ductivity, kinematic viscosity and magnetic induction strength B, figure 5 
may be interpreted as giving a1 as a function of V ,  the characteristic velocity. 
Again, the features noted earlier are apparent and no further comment is neces- 
sary. 

6. Concluding remarks 
In  the previous sections, we have considered in some detail the behaviour of a 

magnetic field on the stability of the plane interface between two conducting 
viscous fluids in relative motion. By use of the transformation introduced in § 3 
the number of free parameters involved in our problem was reduced by one, thus 
considerably simplifying the subsequent investigation. Earlier workers in this 
field have apparently overlooked this transformation and, instead, reduced the 
number of free parameters by making assumptions concerning the nature of the 
original parameters (e.g. R, < 1). The solution of the full problem-without 
such approximations being made - revealed several features not evident in the 
approximate solutions. 

In interpreting our results it must be borne in mind that they are only 
applicable in the limit of small wavenumber: it is only in this limit that the use 
of a discontinuous velocity profile is justifiable. 

To discuss the effect of the magnetic field on the stability of the flow it was 
found expedient to distinguish between the ranges P, < 1 and P, > 1. For 
P, < 1 we found that the region of hstability (and the value of A necessary to 
suppress the instability) increased with decreasing P,. In  the limiting case 
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P, = 0 the field and flow become decoupled and the instability is always present, 
the critical Reynolds number being zero. This is, intuitively, to be expected. 

At the other extreme (i.e. P, 9 1) the effect of the magnetic field is t o  stabilize 
the flow for A > 1. Again, this is the type of behaviour to be expected from a 
physical basis resting upon such ideas as the ‘frozen-in’ field, or considering the 
effect of the field as being equivalent to a surface tension at the interface (though 
this analogy must be applied with caution to a viscous flow). 

In the intermediate range of magnetic Prandtl number (e.g. P, of order unity) 
the interaction of the viscous and magnetic effects is considerably more compli- 
cated, and correspondingly it is difficult to obtain any valuable physical insight 
into the nature of these interactions. 

I should like to thank Dr C. Sozou and Dr R. C. Hewson-Browne for helpful 
discussions during the course of this work. I should also like to thank Dr A. D. D. 
Craik for suggesting several improvements to an earlier draft of this paper. 
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